48 research outputs found

    Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals

    Get PDF
    AbstractThe branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids involved in several important brain functions. Although commonly used as nutritional supplements, excessive intake of BCAAs might favour the establishment of neurotoxic conditions as indicated by the severe neurological symptoms characterising inherited disorders of BCAA catabolism such as maple syrup urine disease (MSUD). Recent evidence indicates that BCAAs induce excitotoxicity through mechanisms that require the presence of astrocytes. In the present study, we evaluated the effects of BCAAs on microglia, the main immune cells of the brain. As an experimental model we used primary microglial cells harvested from mixed glial cultures that had been kept in normal or high BCAA medium (H-BCAA). We show that H-BCAA microglial cells exhibit a peculiar phenotype characterized by a partial skewing toward the M2 state, with enhanced IL-10 expression and phagocytic activity but also increased free radical generation and decreased neuroprotective functions. We suggest that such an intermediate M1/M2 phenotype might result in a less efficient microglial response, which would promote the establishment of a low grade chronic inflammation and increase the likelihood of neurodegeneration. Although based on in vitro evidence, our study adds on to an increasing literature indicating that the increasing use of dietary integrators might deserve consideration for the possible drawbacks. In addition to excitotoxicity, the altered immune profile of microglia might represent a further mechanism by which BCAAs might turn into toxicants and facilitate neurodegeneration

    Mechanisms of nerve damage in neuropathies associated with hematological diseases: lesson from nerve biopsies

    Get PDF
    Despite the introduction of non-invasive techniques in the study of peripheral neuropathies, sural nerve biopsy remains the gold standard for the diagnosis of several neuropathies, including vasculitic neuropathy and neurolymphomatosis. Besides its diagnostic role, sural nerve biopsy has helped to shed light on the pathogenic mechanisms of different neuropathies. In the present review, we discuss how pathological findings helped understand the mechanisms of polyneuropathies complicating hematological diseases

    A Calsequestrin-1 mutation associated with a skeletal muscle disease alters sarcoplasmic Ca2+ release

    Get PDF
    An autosomal dominant protein aggregate myopathy, characterized by high plasma creatine kinase and calsequestrin-1 (CASQ1) accumulation in skeletal muscle, has been recently associated with a missense mutation in CASQ1 gene. The mutation replaces an evolutionarily-conserved aspartic acid with glycine at position 244 (p.D244G) of CASQ1, the main sarcoplasmic reticulum (SR) Ca2+ binding and storage protein localized at the terminal cisternae of skeletal muscle cells. Here, immunocytochemical analysis of myotubes, differentiated from muscle-derived primary myoblasts, shows that sarcoplasmic vacuolar aggregations positive for CASQ1 are significantly larger in CASQ1-mutated cells than control cells. A strong co-immuno staining of both RyR1 and CASQ1 was also noted in the vacuoles of myotubes and muscle biopsies derived from patients. Electrophysiological recordings and sarcoplasmic Ca2+ measurements provide evidence for less Ca2+ release from the SR of mutated myotubes when compared to that of controls. These findings further clarify the pathogenic nature of the p.D244G variant and point out defects in sarcoplasmic Ca2+ homeostasis as a mechanism underlying this human disease, which could be distinctly classified as "CASQ1-couplonopathy".peer-reviewe

    Curcumin protects against NMDA-induced toxicity: A possible role for NR2A subunit

    Get PDF
    PURPOSE. Curcumin, a phenolic compound extracted from the rhizome of Curcuma longa, was found to attenuate NMDAinduced excitotoxicity in primary retinal cultures. This study was conducted to further characterize curcumin neuroprotective ability and analyze its effects on NMDA receptor (NMDAr). METHODS. NMDAr modifications were analyzed in primary retinal cell cultures using immunocytochemistry, whole-cell patch-clamp recording and western blot analysis. Cell death was evaluated with the TUNEL assay in primary retinal and hippocampal cultures. Optical fluorometric recordings with Fura 2-AM were used to monitor [Ca 2Ď© ] i . RESULTS. Curcumin dose-and time-dependently protected both retinal and hippocampal neurons against NMDA-induced cell death, confirming its anti-excitotoxic property. In primary retinal cultures, in line with the observed reduction of NMDAinduced [Ca 2Ď© ] i rise, whole-cell patch-clamp experiments showed that a higher percentage of retinal neurons responded to NMDA with low amplitude current after curcumin treatment. In parallel, curcumin induced an increase in NMDAr subunit type 2A (NR2A) level, with kinetics closely correlated to time-course of neuroprotection and decrease in [Ca 2Ď© ] i . The relation between neuroprotection and NR2A level increase was also in line with the observation that curcumin neuroprotection required protein synthesis. Electrophysiology confirmed an increased activity of NR2A-containing NMDAr at the plasma membrane level. CONCLUSIONS. These results confirm the neuroprotective activity of curcumin against NMDA toxicity, possibly related to an increased level of NR2A, and encourage further studies for a possible therapeutic use of curcumin based on neuromodulation of NMDArs. (Invest Ophthalmol Vis Sci

    Perinatal and 2-year neurodevelopmental outcome in late preterm fetal compromise: the TRUFFLE 2 randomised trial protocol

    Get PDF
    Introduction: Following the detection of fetal growth restriction, there is no consensus about the criteria that should trigger delivery in the late preterm period. The consequences of inappropriate early or late delivery are potentially important yet practice varies widely around the world, with abnormal findings from fetal heart rate monitoring invariably leading to delivery. Indices derived from fetal cerebral Doppler examination may guide such decisions although there are few studies in this area. We propose a randomised, controlled trial to establish the optimum method of timing delivery between 32 weeks and 36 weeks 6 days of gestation. We hypothesise that delivery on evidence of cerebral blood flow redistribution reduces a composite of perinatal poor outcome, death and short-term hypoxia-related morbidity, with no worsening of neurodevelopmental outcome at 2 years. Methods and analysis: Women with non-anomalous singleton pregnancies 32+0 to 36+6 weeks of gestation in whom the estimated fetal weight or abdominal circumference is <10th percentile or has decreased by 50 percentiles since 18-32 weeks will be included for observational data collection. Participants will be randomised if cerebral blood flow redistribution is identified, based on umbilical to middle cerebral artery pulsatility index ratio values. Computerised cardiotocography (cCTG) must show normal fetal heart rate short term variation (≥4.5 msec) and absence of decelerations at randomisation. Randomisation will be 1:1 to immediate delivery or delayed delivery (based on cCTG abnormalities or other worsening fetal condition). The primary outcome is poor condition at birth and/or fetal or neonatal death and/or major neonatal morbidity, the secondary non-inferiority outcome is 2-year infant general health and neurodevelopmental outcome based on the Parent Report of Children's Abilities-Revised questionnaire. Ethics and dissemination: The Study Coordination Centre has obtained approval from London-Riverside Research Ethics Committee (REC) and Health Regulatory Authority (HRA). Publication will be in line with NIHR Open Access policy. Trial registration number: Main sponsor: Imperial College London, Reference: 19QC5491. Funders: NIHR HTA, Reference: 127 976. Study coordination centre: Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0HS with Centre for Trials Research, College of Biomedical & Life Sciences, Cardiff University. IRAS Project ID: 266 400. REC reference: 20/LO/0031. ISRCTN registry: 76 016 200

    Human iPSC-Derived Astrocytes: A Powerful Tool to Study Primary Astrocyte Dysfunction in the Pathogenesis of Rare Leukodystrophies

    No full text
    Astrocytes are very versatile cells, endowed with multitasking capacities to ensure brain homeostasis maintenance from brain development to adult life. It has become increasingly evident that astrocytes play a central role in many central nervous system pathologies, not only as regulators of defensive responses against brain insults but also as primary culprits of the disease onset and progression. This is particularly evident in some rare leukodystrophies (LDs) where white matter/myelin deterioration is due to primary astrocyte dysfunctions. Understanding the molecular defects causing these LDs may help clarify astrocyte contribution to myelin formation/maintenance and favor the identification of possible therapeutic targets for LDs and other CNS demyelinating diseases. To date, the pathogenic mechanisms of these LDs are poorly known due to the rarity of the pathological tissue and the failure of the animal models to fully recapitulate the human diseases. Thus, the development of human induced pluripotent stem cells (hiPSC) from patient fibroblasts and their differentiation into astrocytes is a promising approach to overcome these issues. In this review, we discuss the primary role of astrocytes in LD pathogenesis, the experimental models currently available and the advantages, future evolutions, perspectives, and limitations of hiPSC to study pathologies implying astrocyte dysfunctions

    The Antihypertensive Drug Telmisartan Protects Oligodendrocytes from Cholesterol Accumulation and Promotes Differentiation by a PPAR-Îł-Mediated Mechanism

    No full text
    Our previous studies have demonstrated that specific peroxisome proliferator-activated receptor-Îł (PPAR-Îł) agonists play a fundamental role in oligodendrocyte progenitor (OP) differentiation, protecting them against oxidative and inflammatory damage. The antihypertensive drug Telmisartan (TLM) was shown to act as a PPAR-Îł modulator. This study investigates the TLM effect on OP differentiation and validates its capability to restore damage in a pharmacological model of Niemann-Pick type C (NPC) disease through a PPAR-Îł-mediated mechanism. For the first time in purified OPs, we demonstrate that TLM-induced PPAR-Îł activation downregulates the type 1 angiotensin II receptor (AT1), the level of which naturally decreases during differentiation. Like other PPAR-Îł agonists, we show that TLM promotes peroxisomal proliferation and promotes OP differentiation. Furthermore, TLM can offset the OP maturation arrest induced by a lysosomal cholesterol transport inhibitor (U18666A), which reproduces an NPC1-like phenotype. In the NPC1 model, TLM also reduces cholesterol accumulation within peroxisomal and lysosomal compartments and the contacts between lysosomes and peroxisomes, revealing that TLM can regulate intracellular cholesterol transport, crucial for myelin formation. Altogether, these data indicate a new potential use of TLM in hypomyelination pathologies such as NPC1, underlining the possible repositioning of the drug already used in other pathologies

    Myelin Defects in Niemann–Pick Type C Disease: Mechanisms and Possible Therapeutic Perspectives

    No full text
    Niemann–Pick type C (NPC) disease is a wide-spectrum clinical condition classified as a neurovisceral disorder affecting mainly the liver and the brain. It is caused by mutations in one of two genes, NPC1 and NPC2, coding for proteins located in the lysosomes. NPC proteins are deputed to transport cholesterol within lysosomes or between late endosome/lysosome systems and other cellular compartments, such as the endoplasmic reticulum and plasma membrane. The first trait of NPC is the accumulation of unesterified cholesterol and other lipids, like sphingosine and glycosphingolipids, in the late endosomal and lysosomal compartments, which causes the blockade of autophagic flux and the impairment of mitochondrial functions. In the brain, the main consequences of NPC are cerebellar neurodegeneration, neuroinflammation, and myelin defects. This review will focus on myelin defects and the pivotal importance of cholesterol for myelination and will offer an overview of the molecular targets and the pharmacological strategies so far proposed, or an object of clinical trials for NPC. Finally, it will summarize recent data on a new and promising pharmacological perspective involving A2A adenosine receptor stimulation in genetic and pharmacological NPC dysmyelination models
    corecore